Assignment 3

1. Conjuction

The &E and &I rules are simple in form. The &E rule says that from a sentence of the form X&Y, we can infer X and we can infer Y. In this case, & <u>must</u> be the main connective in X&Y. The &I rule says that if both X and Y have been reached in a proof, then at a later line, we may infer X&Y. In both rules &E and &I, the conclusion depends on the unproved assumptions on which the premises of the rule depend. &E and &I are exactly like \rightarrow E and MT in this regard.

The points to remember in using &E and &I are:

1) In order to use a conjunction, infer each of its components by &E.

2) In order to <u>prove</u> a conjunction, attempt to derive each of its components, and then use &I.

EXAMPLE 1. $P \rightarrow Q, R \rightarrow S \models (P \& R) \rightarrow$	•(Q&	S)	
Step 1. Since our goal, $(P\&R) \rightarrow (Q\&S)$ is a conditional, I will assume P&R and try to prove Q&S.		1 (1) $P \rightarrow Q$ 2 (2) $R \rightarrow S$ 3 (3) $P \& R$	A A A
		$\begin{array}{c} 2,3 \ (n-1) \ Q\&S \\ 2 \ (n) \ (P\&R) \rightarrow \end{array}$	new goal $(Q\&S) \rightarrow I$
Step 2. Since what is to be proved is a conjunction, I will try to prove it by deducing each component.		$ \begin{array}{rrrr} 1 & (1) P \rightarrow Q \\ 2 & (2) R \rightarrow S \\ 3 & (3) P \& R \end{array} $	A A A
		? Q	new goal
1		? S ,3 (n-1) Q&S (n) (P&R)→(Q	new goal &I &S) →I
Step 3. Line 3 is a conjunction; to use it, I infer each of its components P and R. But then I can use P with line 1 and R with line 2.	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 1 2 \end{array} $	(1) $P \rightarrow Q$ (2) $R \rightarrow S$ (3) $P \& R$ (4) P (5) R (6) Q	A A A 3 &E 3 &E
	1,3 2,3 1,2,3 1,2	(6) Q (7) S (8) Q&S (9) (P&R)→(0	$1,4 \rightarrow E$ $2,5 \rightarrow E$ 6,7 &I $Q\&S) \&S \rightarrow I (3)$

	```		
Step 1. Since our goal is a conjunction, I will attempt to prove each conjunct separately and then use &I to combine them.	1 2	<ul> <li>(1) (P&amp;T)→Q</li> <li>(2) S&amp;T</li> </ul>	A A
		? P→Q	new goal
		? S	new goal
		(P→Q)&S	&I
Step 2. S follows directly from line 2. So that	1	(1) (P&T)→Q	А
goal is easy to obtain. Our other goal is a	2	(2) S&T	А
conditional, so I will assume its antecedent	2	(3) S	2 &E
and try to prove its consequent.	4	(4) P	А
		(n, 2)	now goal
		(n-2) Q	new goal
		(n-1) $P \rightarrow Q$	→I
			-
		$\begin{array}{c} (n-1) \ P \rightarrow Q \\ (n) \ (P \rightarrow Q) \& S \end{array}$	→I &I
Step 3. Our new goal is Q which occurs only in	1	(n-1) $P \rightarrow Q$ (n) $(P \rightarrow Q) \& S$ (1) $(P \& T) \rightarrow Q$	
line 1. In order to use line 1 to get Q, I would	2	(n-1) $P \rightarrow Q$ (n) $(P \rightarrow Q) \& S$ (1) $(P \& T) \rightarrow Q$ (2) $S \& T$	$ \begin{array}{c} \rightarrow I \\ \& I \end{array} $
line 1. In order to use line 1 to get Q, I would first need to prove P&T and then use $\rightarrow$ E. In	2 2	(n-1) $P \rightarrow Q$ (n) $(P \rightarrow Q) \& S$ (1) $(P \& T) \rightarrow Q$ (2) $S \& T$ (3) $S$	$ \begin{array}{c} \rightarrow I \\ \& I \end{array} $ $ \begin{array}{c} A \\ A \\ 2 \& E \end{array} $
line 1. In order to use line 1 to get Q, I would first need to prove P&T and then use $\rightarrow$ E. In order to get P&T, I first need P and T each by	2 2 4	(n-1) $P \rightarrow Q$ (n) $(P \rightarrow Q) \& S$ (1) $(P \& T) \rightarrow Q$ (2) $S \& T$	$ \begin{array}{c} \rightarrow I \\ \& I \end{array} $
line 1. In order to use line 1 to get Q, I would first need to prove P&T and then use $\rightarrow$ E. In	2 2	(n-1) $P \rightarrow Q$ (n) $(P \rightarrow Q) \& S$ (1) $(P \& T) \rightarrow Q$ (2) $S \& T$ (3) $S$	$ \begin{array}{c} \rightarrow I \\ \& I \end{array} $ $ \begin{array}{c} A \\ A \\ 2 \& E \end{array} $
line 1. In order to use line 1 to get Q, I would first need to prove P&T and then use $\rightarrow$ E. In order to get P&T, I first need P and T each by	2 2 4	(n-1) $P \rightarrow Q$ (n) $(P \rightarrow Q) \& S$ (1) $(P \& T) \rightarrow Q$ (2) $S \& T$ (3) $S$ (4) $P$	$ \begin{array}{c} \rightarrow I \\ \& I \end{array} $ $ \begin{array}{c} A \\ A \\ 2 \& E \\ A \end{array} $
line 1. In order to use line 1 to get Q, I would first need to prove P&T and then use $\rightarrow$ E. In order to get P&T, I first need P and T each by themselves on separate lines and then use &I.	2 2 4 2	(n-1) $P \rightarrow Q$ (n) $(P \rightarrow Q) \& S$ (1) $(P \& T) \rightarrow Q$ (2) $S \& T$ (3) $S$ (4) $P$ (5) $T$	
line 1. In order to use line 1 to get Q, I would first need to prove P&T and then use $\rightarrow$ E. In order to get P&T, I first need P and T each by themselves on separate lines and then use &I.	2 2 4 2 2,4	(n-1) $P \rightarrow Q$ (n) $(P \rightarrow Q) \& S$ (1) $(P \& T) \rightarrow Q$ (2) $S \& T$ (3) $S$ (4) $P$ (5) $T$ (6) $P \& T$	$ \overrightarrow{A} $ $ A $ $ A $ $ 2 \& E $ $ A $ $ 2\& E $ $ 4,5 \& I $

 $(P\&T)\rightarrow Q, S\&T \models (P\rightarrow Q)\&S$ 

## 2. Disjunction

EXAMPLE 2

The <u>vI</u> rule permits the introduction of <u>any</u> sentence as a disjunct, if we have already reached the other disjunct. This is justifiable because a disjunction is true if one of its components is true. Thus all of the following are correct uses of vI:

P	P	P	P	P	~P
PvQ	QvP	Pv~P	∼QvP	PvP	Qv~P
~P ~Qv~P	P&R (P&R)v~Q	P&R ~Qv(P&R)	PvR (PvR)vQ	$P \rightarrow R$ $(P \rightarrow R)v(R \rightarrow$	Q)

Like  $\rightarrow$ E, MT, &E, and &I, the conclusion of a use of vI depends on the same unproved assumptions as the premise from which it is derived. In a correct use of vI, the main connective of the conclusion will be a disjunction. Thus the following are <u>NOT</u> correct uses of vI:

1	(1) P→R	А	1	(1) ~P	А
1	(2) (PvQ) $\rightarrow$ R	1 vI	1	(2) ~(~PvQ)	1 vI

Although the rule vI permits us to add anything we want as a disjunct, the way the rule vI is to be used in a particular proof is frequently determined by what we are trying to prove. To see how this works, consider these examples:

EXAMPLE 3. (I	RvP)→S	ŀ	P→(SvT)	
Step 1. Since we are trying to p conditional, I will assume its ar and try to prove its consequent.	ntecedent	1 2	(1) (RvP) $\rightarrow$ S (2) P	A A
		1,2 1	(n-1) SvT (n) $P \rightarrow (SvT)$	new goal $\rightarrow I(2)$
Step 2. We wish to prove SvT follow from either S or from T does not occur in the premises	by vI. T and is	112	(1) (RvP) $\rightarrow$ S (2) P	A A
impossible to prove. So I will t S.	ry to prove	1,2 1,2 1	(n-2) S (n-1) SvT (5) P→(SvT)	new goal vI →I
Step 3. In order to get S, I will use line 1 together with $\rightarrow$ E. T to set RvP as my new goal. Th gotten from line 2 with vI.	hus I need	1 2 1,2 1,2	(1) (RvP) $\rightarrow$ S (2) P (3) RvP (4) S (5) SvT	A A 2 vI 1,3→E 4 vI
		1,2	$\begin{array}{c} (5)  SV1 \\ (6)  P \rightarrow (SvT) \end{array}$	$5 \rightarrow I(2)$

The <u>vE</u> rule says that from a disjunction and the denial of one of the disjuncts, we can infer the other disjunct. For example, from PvQ and  $\sim$ P we can infer Q.

EXAMPLE 4.	AvB, Bv~C	<b>├</b> ~B -	$\rightarrow$ (A&~C)	
Step 1. Since we are trying to conditional, I will assume its and try to prove its conseque	antecedent	1 2 3	<ul> <li>(1) AvB</li> <li>(2) Bv~C</li> <li>(3) ~B</li> </ul>	A A A
			(n-1) A&~C (n) ~B $\rightarrow$ (A&~C)	new goal →I

Step 2. Since our goal is a conjunction, I will try to prove each of its conjuncts separately and then put them together with &I.	1 2 3	<ol> <li>(1) AvB</li> <li>(2) Bv~C</li> <li>(3) ~B</li> </ol>	A A A
		? A	new goal
		? ~C	new goal
		(n-1) A&~C	&I
		$(n) \sim B \rightarrow (A\&\sim C)$	→I
Step 3. Each of my two goals is easily	1	(1) $AvB$	А
obtainable using the vE rule. A follows	2	(2) Bv~C	А
from lines 1 and 3 while ~C follows	3	(3) ~B	А
from 2 and 3.	1,3	(4) A	1,3 vE
	2,3	(5) ~C	2,3 vE
	1,2,3	(6) A&~C	4,5 &I
	1,2	(7) ~B→(A&~C)	6→I (3)